ON BAIRENESS OF THE WIJSMAN HYPERSPACE

LÁSZLÓ ZSILINSZKY

ABSTRACT. Baireness of the Wijsman hyperspace topology is characterized for a metrizable base space with a countable-in-itself π -base; further, a separable 1st category metric space is constructed with a Baire Wijsman hyperspace.

1. INTRODUCTION

There has been a considerable effort in exploring various completeness properties of the Wijsman hyperspace topology w_d , i.e. the weak topology on the nonempty closed subsets of the metric space (X, d) generated by the distance functionals viewed as functions of set argument [17]. It was first shown by *Effros* [10], that a Polish space admits a metric for which the Wijsman topology is Polish; later, *Beer* showed [2],[3], that given a separable *complete* metric base space, the corresponding Wijsman hyperspace is Polish. Finally, *Costantini* demonstrated in [6], that Polish base spaces always generate Polish Wijsman topologies (a short proof, using the so-called strong Choquet game, was found by the author in [19]). As a related result, note that the Wijsman hyperspace is analytic iff X is analytic [1].

Beer asked, whether complete metrizability of X alone (without separability) is equivalent to some completeness property of the Wijsman hyperspace. Costantini [7] showed that a natural candidate, Čech-completeness, is not the right property; on the other side, complete metrizability of X guarantees Baireness [18], even strong α -favorability [19], of the Wijsman hyperspace regardless of the underlying metric on X. It is also known, that less than complete metrizability of X - e.g. having a dense completely metrizable subspace [20] or being a separable Baire space [18], respectively - guarantees Baireness of the Wijsman topology; however, w_d may be non-hereditarily Baire, even if X is separable, hereditarily Baire and has a dense completely metrizable subspace [20], or X is completely metrizable [9], respectively.

It is the purpose of this paper to continue in this research by characterizing Baireness of the Wijsman hyperspace for almost locally separable metrizable spaces.

A space is almost locally separable, provided the set of points of local separability is dense. In a metrizable space, this is equivalent to having a *countable-in-itself* π -base, i.e. a π -base, each element of which contains only countably many elements of the π -base [21] (cf. locally countable pseudo-base of Oxtoby [14]). A topological space is a *Baire space*, provided

²⁰⁰⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54E52.

Key words and phrases. Wijsman topology, ball (proximal) topology, Baire space, countable-in-itself π -base.

LÁSZLÓ ZSILINSZKY

countable collections of dense open subsets have a dense intersection or, equivalently, if nonempty open sets are of 2nd Baire category [12].

Let CL(X) stand for the space of nonempty closed subsets of a topological space (X, τ) (the so-called *hyperspace* of X), and for $M \subseteq X$ define

$$M^{-} = \{ A \in CL(X) : A \cap M \neq \emptyset \},\$$

$$M^{+} = \{ A \in CL(X) : A \subseteq M \}.$$

We will write M^c , \overline{M} for the complement and closure, respectively, of M in X. If (X, τ) is a metrizable topological space with a compatible metric d, denote by $S(x, \varepsilon)$ (resp. $B(x, \varepsilon)$) the open (resp. closed) ball of radius $\varepsilon > 0$ about $x \in X$, and put $S(M, \varepsilon) = \bigcup_{m \in M} S(m, \varepsilon)$ for the open ε -hull of $M \subseteq X$. Denote by B(X) the collection of finite unions of closed balls.

The Wijsman topology w_d on CL(X) is the weak topology generated by the distance functionals $d(x, A) = \inf\{d(x, a); a \in A\}$ $(x \in X, A \in CL(X))$ viewed as functionals of set argument. It is easy to show that subbase elements of w_d are of the form U^- and $\{A \in CL(X) : d(x, A) > \varepsilon\}$, where $U \in \tau, x \in X$ and $\varepsilon > 0$. The Wijsman topology is a fundamental tool in the construction of the lattice of hyperspace topologies, since many of these arise as suprema and infima, respectively of appropriate Wijsman topologies [4],[8].

The ball proximal topology bp_d has subbase elements of the form U^- and $\{A \in CL(X) : \inf\{d(a,b) : (a,b) \in A \times B\} > \varepsilon\}$, where $U \in \tau$, $B \in \Delta$, $\varepsilon > 0$; it coincides with the Wijsman topology when X is a normed space (for a characterization of this coincidence see [11]). Moreover, bp_d is Baire if and only if w_d is [18]. As we will see, there is an even simpler hypertopology on CL(X) with this "Baire connection", the so-called ball topology.

The ball topology b_d has subbase elements of the form U^- and $(B^c)^+$, where $U \in \tau$ and $B \in B(X)$. It is not hard to show that the collection

$$\mathcal{B} = \{ (B^c)^+ \cap \bigcap_{i \le n} S(x_i, r)^- : B \in B(X), r > 0, n \in \omega,$$

the $S(x_i, r)$'s are pairwise disjoint and miss B

is a base for b_d . The ball topology is a hit-and-miss topology, like the well-known Vietoris or Fell topologies [3]; b_d may be non-regular [11], so it is certainly not always equal to the (completely regular) Wijsman topology, however, we have:

Theorem 1.1. The following are equivalent:

- (i) $(CL(X), w_d)$ is a Baire space,
- (ii) $(CL(X), b_d)$ is a Baire space.

Proof. If $\mathcal{U}_w = \bigcap_{i \leq n} U_i^- \cap \bigcap_{j \leq m} \{A \in CL(X) : d(x_j, A) > \varepsilon_j\} \in w_d$ is nonempty, $r = \min\{\frac{d(x_j, A) - \varepsilon_j}{2} : j \leq m\}$, and

$$\mathcal{U}_b = \bigcap_{i \le n} U_i^- \cap \bigcap_{j \le m} ((B(x_j, \varepsilon_j + r))^c)^+ \in b_d,$$

then $\emptyset \neq \mathcal{U}_b \subseteq \mathcal{U}_w$.

Conversely, if $\mathcal{U}_b = \bigcap_{i \leq n} U_i^- \cap \bigcap_{j \leq m} ((B(x_j, \varepsilon_j))^c)^+ \in b_d$ is nonempty, and $a_i \in U_i$ so that $d(x_j, a_i) > \varepsilon_j$ for all i, j, then $r = \min_{i,j} d(x_j, a_i) > \varepsilon_j$ for all j, and for

$$\mathcal{U}_w = \bigcap_{i \le n} U_i^- \cap \bigcap_{j \le m} \{A \in CL(X) : d(x_j, A) > \frac{\varepsilon_j + r}{2}\} \in w_d$$

we have $\{a_0, \ldots, a_n\} \in \mathcal{U}_w \subseteq \mathcal{U}_b$. The theorem now follows by [16], Proposition 3.4. \Box

2. Main Results

We need some auxiliary material first: natural numbers will be viewed as sets of predecessors, $\Delta \subseteq CL(X)$ will be closed under finite unions, bold symbols will denote notions related to the product space $\mathbf{X} = X^{\omega}$ endowed with the so-called *pinched-cube topology* [15] $\boldsymbol{\tau} = \boldsymbol{\tau}(\Delta)$ having the base

$$\mathcal{B} = \{ (\prod_{i \le n} U_i) \times (B^c)^{\omega \setminus (n+1)} : B \in \Delta, n \in \omega, \ U_i \in \tau, U_i \subseteq B^c \ \forall i \le n \}$$

If $J \subseteq \omega$, the projection map $\pi_J : (\mathbf{X}, \boldsymbol{\tau}) \to X^J$ is continuous and open. If $\mathbf{C} \subseteq \mathbf{X}, J \subseteq \omega$ and $x \in X^J$, denote $\mathbf{C}[x] = \mathbf{C} \cap \pi_J^{-1}(x)$; further, if \mathbf{C} is a collection of subsets of \mathbf{X} , put $\mathbf{C}[x] = \{\mathbf{C} \in \mathbf{C} : \mathbf{C}[x] \neq \emptyset\}.$

The proof of the next theorem is a modification of analogous results about the Tychonoff and box products of Baire spaces from [21], we sketch the proof for completeness:

Theorem 2.1. If (X, τ) is a topological Baire space with a countable-in-itself π -base, then $(\mathbf{X}, \boldsymbol{\tau})$ is a Baire space.

Proof. Let \mathcal{P} be a countable-in-itself π -base of X. Let $\{\mathbf{G}_n\}_n$ be a decreasing sequence of dense open subsets of $(\mathbf{X}, \boldsymbol{\tau})$ and fix a nonempty $\boldsymbol{\tau}$ -open \mathbf{V} . Choose $\mathbf{V}_0 \in \boldsymbol{\mathcal{B}}$ with $\mathbf{V}_0 \subseteq \mathbf{V} \cap \mathbf{G}_0, \ \pi_1(\mathbf{V}_0) \in \mathcal{P}$ and put $\boldsymbol{\mathcal{B}}_0 = \{\mathbf{V}_0\}$. By induction, we can define $\boldsymbol{\mathcal{B}}_i \subseteq \boldsymbol{\mathcal{B}}$ for each $i \geq 1$ so that $\boldsymbol{\mathcal{B}}_i = \bigcup_{\mathbf{B} \in \boldsymbol{\mathcal{B}}_{i-1}} \boldsymbol{\mathcal{B}}_i(\mathbf{B})$, where for all $\mathbf{B} \in \boldsymbol{\mathcal{B}}_{i-1}, \ \boldsymbol{\mathcal{B}}_i(\mathbf{B})$ is a maximal collection such that

- (1) $\mathbf{A} \subseteq \mathbf{B} \cap \mathbf{G}_i$ for each $\mathbf{A} \in \mathcal{B}_i(\mathbf{B})$,
- (2) $\pi_{i+1}(\mathbf{A}) \in \{\prod_{k \leq i} P_k : (P_0, \dots, P_i) \in \mathcal{P}^{i+1}\}$ for each $\mathbf{A} \in \mathcal{B}_i(\mathbf{B}),$
- (3) $\{\pi_i(\mathbf{A}) : \mathbf{A} \in \mathbf{B}_i(\mathbf{B})\}\$ is pairwise disjoint.

Notice, that each $\mathcal{B}_i(\mathbf{B})$ is countable, since, by (2), $\pi_i(\mathbf{B})$ has ccc for each $i \geq 1$ and $\mathbf{B} \in \mathcal{B}_{i-1}$. For $i \geq 1$ denote

$$\mathbf{\mathfrak{U}}_{i} = \bigcup_{\mathbf{B}\in\mathbf{\mathfrak{B}}_{i}} \{\mathbf{U}\in\mathbf{\mathfrak{B}}: \pi_{\omega\setminus i}(\mathbf{U}) = \pi_{\omega\setminus i}(\mathbf{B}) \text{ and } \mathbf{U}\subseteq\mathbf{B}\}$$

For each $\mathbf{B} \in \mathcal{B}_1(\mathbf{V}_0)$ define

$$Y_{\mathbf{B}}^{(0)} = \{ x \in X : \mathbf{B}[x] \neq \emptyset \text{ and } \forall \mathbf{U} \in \mathbf{\mathcal{U}}_2(\mathbf{U} \subseteq \mathbf{B} \Rightarrow \mathbf{U}[x] = \emptyset) \}.$$

CLAIM 2.1.1. $Y_{\mathbf{B}}^{(0)}$ is nowhere dense in X for each $\mathbf{B} \in \mathcal{B}_1(\mathbf{V}_0)$.

LÁSZLÓ ZSILINSZKY

(Assume by contradiction that for some $\mathbf{B} \in \mathcal{B}_1(\mathbf{V}_0)$, $Y_{\mathbf{B}}^{(0)}$ is dense in some $U \in \tau$. Then $\mathbf{B} \cap \pi_1^{-1}(U) \neq \emptyset$, and by maximality of $\mathcal{B}_2(\mathbf{B})$, there exists $\mathbf{E} \in \mathcal{B}_2(\mathbf{B})$ such that $\mathbf{U} = \mathbf{E} \cap \pi_1^{-1}(U) \neq \emptyset$. Then $\mathbf{U} \in \mathcal{U}_2$, $\mathbf{U} \subseteq \mathbf{B}$, and $\pi_1(\mathbf{U})$ is a nonempty open subset of U; thus, it intersects with $Y_{\mathbf{B}}^{(0)}$, say, in x. To get a contradiction, note that $x \in \pi_1(\mathbf{U})$ means $\mathbf{U}[x] \neq \emptyset$; on the other hand, $x \in Y_{\mathbf{B}}^{(0)}$ implies $\mathbf{U}[x] = \emptyset$.)

Define $W_0 = \pi_1(\bigcup \mathcal{B}_1(\mathbf{V}_0))$. Since X is a Baire space, by Claim 2.1.1, we can choose some

$$x_0 \in W_0 \setminus \bigcup \{Y_{\mathbf{B}}^{(0)} : \mathbf{B} \in \mathcal{B}_1(\mathbf{V}_0)\}.$$

Then, by (3), there is a unique $\mathbf{V}_1 \in \mathcal{B}_1(\mathbf{V}_0)[x_0]$; further, for each $\mathbf{B} \in \mathcal{B}_1(\mathbf{V}_0)[x_0]$ there is a $\mathbf{U} \in \mathcal{U}_2$ with $\mathbf{U} \subseteq \mathbf{B}$ and $\mathbf{U}[x_0] \neq \emptyset$.

By induction, assume that for all $i \leq n$ $(n \in \omega)$, $\mathbf{V}_i \in \mathbf{B}_i$, and

$$x_i \in W_i = \pi_{(i+1)\backslash i}(\bigcup \mathcal{B}_{i+1}(\mathbf{V}_i)[x_0,\ldots,x_{i-1}])$$

have been defined (when i = 0, $\mathcal{B}_1(\mathbf{V}_0)[x_0, x_{-1}]$) is meant to be $\mathcal{B}_1(\mathbf{V}_0)$) so that

- (4) $\forall 1 \leq i \leq n \ (\mathbf{V}_i \in \mathcal{B}_i(\mathbf{V}_{i-1})[x_0, \dots, x_{i-1}]),$
- (5) $\forall i \leq n \,\forall \mathbf{B} \in \mathcal{B}_{i+1}(\mathbf{V}_i)[x_0, \dots, x_i] \; \exists \mathbf{U} \in \mathcal{U}_{i+2} \; (\mathbf{U} \subseteq \mathbf{B} \text{ and } \mathbf{U}[x_0, \dots, x_i] \neq \emptyset).$

Since $x_n \in W_n$, and, by (3), $\{\pi_{(n+1)\setminus n}(\mathbf{A}) : \mathbf{A} \in \mathcal{B}_{n+1}(\mathbf{V}_n)[x_0, \dots, x_{n-1}]\}$ is pairwise disjoint, there is a unique $\mathbf{V}_{n+1} \in \mathcal{B}_{n+1}(\mathbf{V}_n)[x_0, \dots, x_{n-1}]$ with $\mathbf{V}_{n+1}[x_0, \dots, x_n] \neq \emptyset$; thus, (4) holds for $1 \leq i \leq n+1$.

Moreover, (5) implies that there is some $\mathbf{U} \in \mathbf{U}_{n+2}$ with $\mathbf{U} \subseteq \mathbf{V}_{n+1}$ and $\mathbf{U}[x_0, \ldots, x_n] \neq \emptyset$. We can also find $\mathbf{B} \in \mathbf{B}_{n+2}$ with $\mathbf{U} \subseteq \mathbf{B}$ and $\pi_{\omega \setminus (n+2)}(\mathbf{U}) = \pi_{\omega \setminus (n+2)}(\mathbf{B})$. By (1), $\mathbf{B} \subseteq \mathbf{G}_{n+2}$, and since \mathbf{B} intersects \mathbf{V}_{n+1} , it follows by (3), that $\mathbf{B} \subseteq \mathbf{V}_{n+1}$; thus, $\mathbf{B} \in \mathbf{B}_{n+2}(\mathbf{V}_{n+1})[x_0, \ldots, x_n]$, so

$$W_{n+1} = \pi_{(n+2)\backslash(n+1)}(\bigcup \mathcal{B}_{n+2}(\mathbf{V}_{n+1})[x_0,\ldots,x_n])$$

is a nonempty open subset of X. For each $\mathbf{B} \in \mathcal{B}_{n+2}(\mathbf{V}_{n+1})[x_0,\ldots,x_n]$ define

$$Y_{\mathbf{B}}^{(n+1)} = \{ x \in X : \mathbf{B}[x_0, \dots, x_n, x] \neq \emptyset \text{ and} \\ \forall \mathbf{U} \in \mathbf{\mathcal{U}}_{n+3} (\mathbf{U} \subseteq \mathbf{B} \Rightarrow \mathbf{U}[x_0, \dots, x_n, x] = \emptyset) \}.$$

CLAIM 2.1.2. $Y_{\mathbf{B}}^{(n+1)}$ is nowhere dense in X for each $\mathbf{B} \in \mathcal{B}_{n+2}(\mathbf{V}_{n+1})[x_0,\ldots,x_n]$.

(Indeed, if $Y_{\mathbf{B}}^{(n+1)}$ is dense in some $U \in \tau$, then $\mathbf{B} \cap \pi_{(n+2)\setminus(n+1)}^{-1}(U) \neq \emptyset$, and by maximality of $\mathcal{B}_{n+3}(\mathbf{B})$, there exists $\mathbf{E} \in \mathcal{B}_{n+3}(\mathbf{B})$ such that $\mathbf{U} = \mathbf{E} \cap \pi_{(n+2)\setminus(n+1)}^{-1}(U) \neq \emptyset$. Then $\mathbf{U} \in \mathfrak{U}_{n+3}, \mathbf{U} \subseteq \mathbf{B}$, and $\pi_{(n+2)\setminus(n+1)}(\mathbf{U})$ is a nonempty open subset of U; thus, it intersects with $Y_{\mathbf{B}}^{(n+1)}$, say, in x. Finally, $x \in \pi_{(n+2)\setminus(n+1)}(\mathbf{U})$ means that $\mathbf{U}[x] \neq \emptyset$; on the other hand, $x \in Y_{\mathbf{B}}^{(n+1)}$ implies $\mathbf{U}[x] = \emptyset$.)

Now, X is a Baire space so, by Claim 2.1.2, we can find

$$x_{n+1} \in W_{n+1} \setminus \bigcup \{ Y_{\mathbf{B}}^{(n+1)} : \mathbf{B} \in \mathcal{B}_{n+2}(\mathbf{V}_{n+1})[x_0, \dots, x_n] \},\$$

so (5) is satisfied for $i \leq n+1$. By induction, we have constructed $\mathbf{x} = (x_n)_{n \in \omega} \in \mathbf{X}$, and a sequence $\{\mathbf{V}_n \in \mathbf{\mathcal{B}} : n \in \omega\}$ with $\mathbf{V}_{n+1} \in \mathbf{\mathcal{B}}_{n+1}(\mathbf{V}_n)[x_0, \dots, x_n]$ for all $n \in \omega$. Then $\mathbf{x} \in \mathbf{V}_n \subseteq \mathbf{V} \cap \mathbf{G}_n$ for each $n \in \omega$, so $\mathbf{V} \cap \bigcap_n \mathbf{G}_n \neq \emptyset$, and $(\mathbf{X}, \boldsymbol{\tau})$ is a Baire space. \square

Theorem 2.2. Let X be metrizable with a compatible metric d.

If $(\mathbf{X}, \boldsymbol{\tau}(B(X)))$ is a Baire space, then $(CL(X), b_d)$ is a Baire space.

Proof. The set

$$S(X) = \{A \in CL(X) : A \text{ separable}\}\$$

is dense in $(CL(X), b_d)$, since even the set of finite subsets of X is; thus, we only need to prove that $(S(X), b_d \upharpoonright_{S(X)})$ is a Baire space. Define $\varphi : (\mathbf{X}, \boldsymbol{\tau}) \to (S(X), b_d \upharpoonright_{S(X)})$ via

$$\varphi(\mathbf{x}) = \overline{\{x_k : k \in \omega\}}, \text{ where } \mathbf{x} = (x_k)_k \in \mathbf{X}.$$

We will be done, if we show that φ is continuous and feebly open (i.e. the interior of $\varphi(\mathbf{V})$ is nonempty for each nonempty $\mathbf{V} \in \boldsymbol{\tau}$), since Baire spaces are invariant of these mappings (see [12] or [13]).

To see continuity, take a basic $\mathcal{V} = (B^c)^+ \cap \bigcap_{i \leq m} V_i^- \in \mathcal{B}$, where $B = \bigcup_{j \leq p} B(z_j, \varepsilon_j) \in B(X)$. If $\mathbf{x} = (x_k)_k \in \varphi^{-1}(\mathcal{V})$, then $\varphi(\mathbf{x}) \in \mathcal{V}$, so there exists a $k_i \in \omega$ with $x_{k_i} \in V_i$ for each $i \leq m$. We can find some $\delta_j > \varepsilon_j$ so that $d(z_j, f(\mathbf{x})) > \delta_j$ for each $j \leq p$, as well as neighborhoods U_i of x_{k_i} (for all $i \leq m$) that are subsets of $U = (\bigcup_{j \leq p} B(z_j, \delta_j))^c$. Then $\mathbf{U} = (\prod_{i < m} U_i) \times U^{\omega \setminus (m+1)} \in \mathbf{B}$, and $\mathbf{x} \in \mathbf{U} \subseteq \varphi^{-1}(\mathcal{V})$.

To justify feeble openness of φ , take a nonempty $\mathbf{V} = (\prod_{i \leq m} V_i) \times (B^c)^{\omega \setminus (m+1)} \in \mathbf{\mathcal{B}}$, where $B = \bigcup_{j \leq p} B(z_j, \varepsilon_j) \in B(X)$. Denote $\mathcal{V} = (B^c)^+ \cap \bigcap_{i \leq m} V_i^- \in \mathbf{\mathcal{B}}$, and take an $A \in \mathcal{V} \cap S(X)$.

If $C = \{c_k : k \in \omega\}$ is a countable dense subset of A, where $c_i \in C \cap V_i$ for each $i \leq m$, then $\mathbf{c} = (c_k)_k \in \mathbf{V}$, so $A = \varphi(\mathbf{c}) \in \varphi(\mathbf{V})$. Consequently, $\emptyset \neq \mathcal{V} \cap S(X) \subseteq \varphi(\mathbf{V})$. \Box

Theorem 2.3. If X is almost locally separable, then the following are equivalent:

- (i) $(CL(X), w_d)$ is Baire for each compatible metric d on X,
- (ii) $(CL(X), bp_d)$ is Baire for every compatible metric d on X,
- (iii) $(CL(X), b_d)$ is Baire for every compatible metric d on X,
- (iv) X is a Baire space.

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) follows from Theorem 1.1, and (iv) \Rightarrow (iii) from Theorems 2.1 and 2.2

(iii) \Rightarrow (iv) If X is not a Baire space, it has a nonempty open 1st category subset U, and so there exists a separable closed 1st category subset C of U with a nonempty interior *intC*. If d_0 is a compatible totally bounded metric on C, then by a theorem of Bing [5], it can be extended to a compatible metric d on X. Let C_n be an increasing sequence of closed nowhere dense sets such that $C = \bigcup_{n \in \omega} C_n$. By total boundedness of d on C, there exists a finite set $F_{k,n} \subseteq C_n$ for each $n \in \omega, k \ge 1$, such that $C_n \subseteq S(F_{k,n}, \frac{1}{k})$. Define

$$\mathcal{G}_n = \bigcup_{k \ge 1} \bigcup_{x \in F_{k,n}} (B(x, \frac{1}{k})^c)^+.$$

LÁSZLÓ ZSILINSZKY

Then \mathcal{G}_n is clearly b_d -open. Moreover, it is also dense in $(CL(X), b_d)$: indeed, let $\mathcal{V} = (B^c)^+ \cap \bigcap_{i \leq m} V_i^- \in \mathcal{B}$. For each $i \leq m$ there exist $k_i \geq 1$ and $v_i \in V_i \setminus S(C_n, \frac{1}{k_i})$, since otherwise, $V_i \subseteq \bigcap_{k \geq 1} S(C_n, \frac{1}{k}) = C_n$ for some $i \leq m$, which would contradict nowhere density of C_n . If $k = \max\{k_i : i \leq m\}$ and $A = \{v_0, \ldots, v_m\}$, then $A \cap S(F_{k,n}, \frac{1}{k}) = \emptyset$, so $A \in \mathcal{V} \cap \mathcal{G}_n$. To conclude, notice that $\bigcap_{n \in \omega} \mathcal{G}_n$ is disjoint to $(intC)^-$. \Box

Since the Wijsman hyperspace is metrizable iff X is separable [3], we have

Corollary 2.4. The following are equivalent:

- (i) $(CL(X), w_d)$ is a metrizable Baire space for each compatible metric d on X,
- (ii) X is a separable Baire space.

In light of Theorem 2.3, it is natural to ask whether Baireness of just a single Wijsman topology w_d (bp_d , b_d , respectively) implies Baireness of X. The following example (given by R. Pol) shows, that this is not the case:

Example 2.5. There exists a separable 1st category metric space with a Baire Wijsman (ball proximal, ball, resp.) hyperspace.

Proof. Consider ω^{ω} with the Baire metric

$$e(x, y) = 1/\min\{n : x(n) \neq y(n)\}$$

and its 1st category subset $\omega^{<\omega}$ of sequences eventually equal to zero. Then the product $X = \omega^{<\omega} \times \omega^{\omega}$ is a separable, 1st category space endowed with the metric $d((x_0, x_1), (y_0, y_1)) = \max\{e(x_0, y_0), e(x_1, y_1))\}$.

We claim that $(CL(X), b_d)$ is a Baire space: let $p: X \to \omega^{<\omega}$ be the projection onto the first axis. Let $\mathcal{G}_1 \supseteq \mathcal{G}_2 \supseteq \ldots$ be dense open sets in $(CL(X), b_d)$, and $\mathcal{U} \in \mathcal{B}$. Inductively, we will define $\mathcal{U}_i \in \mathcal{B}$ with $\mathcal{U}_i \subseteq \mathcal{G}_i$, and finite sets $F_i \in \mathcal{U}_i$ such that for each $u \in F_i$ there is $u^* \in F_{i+1}$ with $p(u) = p(u^*)$ and $d(u, u^*) < \frac{1}{i}$.

Let $\mathcal{U}_1 \in \mathcal{B}$ be a nonempty subset of \mathcal{G}_1 , and choose a finite set $F_1 \in \mathcal{U}_1$. Suppose that \mathcal{U}_i and F_i have been defined for some $i \geq 1$. If

$$m_i \ge \max\{n : p(u)(n) \ne 0 \text{ for some } u \in F_i\},\$$

and $u' \in S(u, \frac{1}{m_i})$ for some $u \in F_i$, then p(u) = p(u'). Since \mathcal{G}_{i+1} is dense and $F_i \in \mathcal{U}_i \cap \bigcap_{u \in F_i} S(u, \frac{1}{m_i})$, we can find $\mathcal{U}_{i+1} \in \mathcal{B}$ with

$$\mathcal{U}_{i+1} \subseteq \mathcal{G}_{i+1} \cap \mathcal{U}_i \cap \bigcap_{u \in F_i} S(u, \frac{1}{m_i}),$$

and choose a finite $F_{i+1} \in \mathcal{U}_{i+1}$. Assume that

$$\mathcal{U}_i = (B_i^c)^+ \cap \bigcap_{u \in F_i} V_u^- \in \mathcal{B}.$$

For any $u \in F_i$, the sequence u, u^*, u^{**}, \ldots is Cauchy in $\{p(u)\} \times \omega^{\omega}$, so it converges to some $u^{\infty} \in S(u, \frac{1}{m_i}) \subseteq V_u$. By the definition of \mathcal{B} , the set $\{u^{\infty} : u \in \bigcup_{i>1} F_i\}$ misses the clopen B_i

for each $i \ge 1$, so

$$\emptyset \neq \overline{\{u^{\infty} : u \in \bigcup_{i \ge 1} F_i\}\}} \in \bigcap_{i \ge 1} \mathcal{U}_i \subseteq \mathcal{U} \cap \bigcap_{i \ge 1} \mathcal{G}_i;$$
aire space.

thus, $(CL(X), b_d)$ is a Baire space.

Acknowledgements. The author wishes to thank *Roman Pol* for communicating Example 2.5 to him, as well as the referee for the useful comments concerning Theorem 2.1 that greatly improved the paper.

References

- A. Barbati, The hyperspace of an analytic metrizable space is analytic, Rend. Ist. Mat. Univ. Trieste 25 (1993), 15–21.
- G. Beer, A Polish topology for the closed subsets of a Polish space, Proc. Amer. Math. Soc. 113 (1991), 1123-1133.
- 3. G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht, 1993.
- G. Beer, A. Lechicki, S. Levi and S. Naimpally, Distance Functionals and Suprema of Hyperspace Topologies, Annali Mat. Pura Appl. 162 (1992), 367–381.
- 5. R. H. Bing, *Extending a metric*, Duke Math. J. 14 (1947), 511–519.
- C. Costantini, Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc. 123 (1995), 2569–2574.
- C. Costantini, On the hyperspace of a non-separable metric space, Proc. Amer. Math. Soc. 126 (1998), 3393–3396.
- 8. C. Costantini, S. Levi and J. Pelant, Infima of hyperspace topologies, Mathematika 42 (1995), 67–86.
- J. Chaber and R. Pol, Note on the Wijsman hyperspaces of completely metrizable spaces, Bollettino U.M.I. 85-B (2002), 827–832.
- E.G. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929–931.
- 11. L'. Holá and R. Lucchetti, Equivalence among hypertopologies, Set-Valued Anal. 3 (1995), 339–350.
- 12. R.C. Haworth and R.A. McCoy, *Baire spaces*, Dissertationes Math. 141 (1977), 1–77.
- 13. T. Neubrunn, A note on mappings of Baire spaces, Math. Slovaca 27 (1977), 173–176.
- 14. J. C. Oxtoby, Cartesian products of Baire spaces, Fundam. Math. 49 (1961), 157–166.
- Z. Piotrowski, A. Rosłanowski and B. M. Scott, *The pinched-cube topology*, Pacific J. Math. **105** (1983), 399–413.
- 16. A. Todd, Quasiregular, pseudocomplete, and Baire spaces, Pacific J. Math. 95 (1981), 233–250.
- R. Wijsman, Convergence of sequences of convex sets, cones and functions II, Trans. Amer. Math. Soc. 123 (1966), 32–45.
- 18. L. Zsilinszky, Baire spaces and hyperspace topologies, Proc. Amer. Math. Soc. 124 (1996), 2575–2584.
- L. Zsilinszky, Polishness of the Wijsman topology revisited, Proc. Amer. Math. Soc. 126 (1998), 3763– 3765.
- 20. L. Zsilinszky, Topological Games and Hyperspace Topologies, Set-Valued Anal. 6 (1998), 187–207.
- 21. L. Zsilinszky, Products of Baire spaces revisited, Fundam. Math. 183 (2004), 115–121.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF NORTH CAROLINA AT PEMBROKE, PEMBROKE, NC 28372, USA

E-mail address: laszlo@uncp.edu